
Epoch Security Assessment
Dec 8, 2023

Prepared for

Epoch

Prepared by:

0xfoobar

foostudio 1



Table of Contents

Table of Contents 2
Summary 4

Overview 4
Project Scope 4
Severity Classification 4
Summary of Findings 4

Disclaimer 6
Key Findings and Recommendations 7

1. Fee-on-transfer or other malicious tokens can break accounting 7
Description 7
Impact 7
Recommendation 7
Response 8

2. Users can get more than their share of rewards by waiting to withdraw 9
Description 9
Impact 9
Recommendation 9
Response 9

3. Onchain decimals() query is unnecessary 10
Description 10
Impact 10
Recommendation 10
Response 10

4. Array tracking all LP Positions can become stale and sparse 11
Description 11
Impact 11
Recommendation 11
Response 11

5. Unify max protocol fee value, declare hardcoded values as constants 12
Description 12
Impact 12
Recommendation 12
Response 12

6. Use named mappings 13
Description 13
Impact 13
Recommendation 13
Response 13

foostudio 2



7. Fix Natspec 14
Description 14
Impact 14
Recommendation 14
Response 14

8. Use latest compiler version and associated features 16
Description 16
Impact 16
Recommendation 16
Response 16

9. Miscellaneous gas optimizations and comment fixes 17
Description 17
Response 17

foostudio 3



Summary

Overview
Epoch is an ERC20 token offering vote escrowed locks and upside/downside exposure trading
via its ITOProtocol.

Project Scope
We reviewed the core smart contracts and test suite contained within commit hash
`83cdd638b6a923cb726fa453e86d0eb38fcb0bc6` on branch `develop` at
https://github.com/Moai-Labs/vepoch-contracts, and commit hash
`5ce8b7566de7ab4282fcff652230ea646a7495c6` on branch `master` at
https://github.com/Moai-Labs/upside-contracts. Fixes were reviewed at commit hash
`e3c002298ae2af68b7bcb647a87a610c1a8c6e2c` in vepoch-contracts and
`9a0c5310c53a6c424749d215ce7c2de4079cc96b` in upside-contracts.

Severity Classification
High - Assets can be stolen/lost/compromised directly (or indirectly if there is a valid attack path
that does not have hand-wavy hypotheticals).
Medium - Assets not at direct risk, but the function of the protocol or its availability could be
impacted, or leak value with a hypothetical attack path with stated assumptions, but external
requirements.
Low - Assets are not at risk: state handling, function incorrect as to spec, issues with comments.
Informational - Code style, clarity, syntax, versioning, off-chain monitoring (events, etc)

Summary of Findings

Severity Findings Resolved

High 1 1

Medium 2 1

Low 2 1

Informational 4 3

foostudio 4

https://github.com/Moai-Labs/vepoch-contracts
https://github.com/Moai-Labs/upside-contracts


Disclaimer
This security assessment should not be used as investment advice.

We do not provide any guarantees on eliminating all possible security issues. foostudio
recommends proceeding with several other independent audits and a public bug bounty
program to ensure smart contract security.

We did not assess the following areas that were outside the scope of this engagement:
● Website frontend components
● Offchain order management infrastructure
● Multisig or EOA private key custody
● Metadata generation

foostudio 5



Key Findings and Recommendations

1. Fee-on-transfer or other malicious tokens can break accounting

Severity: High
Files: ITOProtocolV1.sol

Description
The supply() method makes optimistic transfer calls to deposit potentially untrusted ERC20s into
the protocol. This could break on nonstandard ERC20s such as fee-on-transfer tokens.

Impact
Broken accounting and potentially bricked withdrawals for specific LP positions.

Recommendation
Best practice is to check balance before and after making the transfer, and update the actual
upsideTokenBalance based on the differential here, like so:

uint256 prevBalance = IERC20(_upsideToken).balanceOf(address(this));

IERC20(_upsideToken).safeTransferFrom(msg.sender, address(this),

_upsideTokenAmount);

_upsideTokenAmount = IERC20(_upsideToken).balanceOf(address(this)) -

prevBalance;

lpPositions.push(LPPosition(

msg.sender,

_feeBp,

_startDate,

_endDate,

IERC20(_downsideToken),

IERC20(_upsideToken),

_upsideTokenAmount,

_exchangeRate,

0

));

foostudio 6



Response
Done.

foostudio 7



2. Users can get more than their share of rewards by waiting to withdraw

Severity: Medium
Files: Vepoch.sol

Description
Users can claim more than their share of rewards by simply not withdrawing once the lock
expires. calculateRewards() has no notion of lock expiry time, only current balance. So waiting
to poke this will increase what users are eligible for. More generally, the math should ensure that
users get no benefits once the lock has expired.

Impact
Value leakage to non-locked users.

Recommendation
Ensure user benefits stop once the lock expires.

Response
Getting continuous rewards after your lock duration has completed is intentional game theory
design. These individuals are still providing liquidity, therefore adding economic value. If they
unlock liquidity after lock compete, they will need to start over completely, so it promotes loyalty.

foostudio 8



3. Onchain decimals() query is unnecessary
Severity: Medium
Files: ITOProtocolV1.sol

Description
The take() and untake() methods query downsideToken.decimals(), to counteract potential
mismatches in precision between upside and downside tokens. However decimals should be
primarily as an offchain display feature rather than incorporated into onchain math. For example,
when a user enters to swap “100 USDC” on the Uniswap frontend, the Uniswap router and pool
do not query USDC decimals. Rather, the Uniswap frontend calculates decimals offchain and
converts “100 USDC” into a 100e6 uint256 that can then be operated on by Solidity. The same
should apply here - decimals being used solely as frontend preprocessing, then the smart
contracts operate directly on raw uint256 amount with no scaling needed.

Impact
Increased gas, complexity, and potential misparameterization of LP positions.

Recommendation
Operate solely on raw uint256 amounts without worrying about decimals.

Response
Done.

foostudio 9



4. Array tracking all LP Positions can become stale and sparse

Severity: Low
Files: ITOProtocolV1.sol

Description
All LP Positions are tracked in a single array. While no specific DDoS vector is present in the
codebase, the `lpPositionsCount()` method is potentially misleading because previous array
elements can be deleted entirely once they’ve been fulfilled.

Impact
Misleading length.

Recommendation
It’s more common to see a mapping(uint256 => LPPosition) paired with an autoincrementing
uint256 to mark the next used id key. This way deletions can be processed fully without leaving
unexpected empty space in the array.

Response
Acknowledged, no changes will be implemented.

foostudio 10



5. Unify max protocol fee value, declare hardcoded values as constants
Severity: Low
Files: ITOProtocolV1.sol

Description
Fee denominator is 10_000, this value is hardcoded in several methods but should be declared
as a constant to ensure no extraneous or mising zeroes slip by anywhere. The
protocolFeeMaxBp is 7_000 (70%) in setProtocolFee() but 7_500 (75%) in supply(). These
values should be unified into one correct value and used as a constant to avoid error.

Impact
Incorrect parameterization.

Recommendation
Use constant declaration to ensure no typos.

Response
Done.

foostudio 11



6. Use named mappings

Severity: Informational
Files: *.sol

Description
Solidity 0.8.18 and later support a language feature called named mappings, where keys and
values can be named to give devs better documentation of what’s expected in each.

Impact
Extraneous comments that could be inlined.

Recommendation
Experiment with named mappings where the storage layout otherwise requires comment
explanations.

Response
None.

foostudio 12

https://blog.soliditylang.org/2023/02/01/solidity-0.8.18-release-announcement/


7. Fix Natspec
Severity: Informational
Files: *.sol

Description
The first word of Natspec return comments should be the name of the returned variable, instead
of the first word of the description of it. Three leading slashes should be used for @notice and
@dev natspec comments. Ensure all function parameters are documented in addition to
methods.

Impact
Cleaner autogenerated docs.

Recommendation
Update Natspec.

Response
Fixed.

foostudio 13



8. Use latest compiler version and associated features

Severity: Informational
Files: pool.sol

Description
All files currently have the solidity pragma at 0.8.17. Best practice is to target the latest 0.8.23
version. This will have three benefits: cheaper deployment costs, gas optimization and new
language features. This protocol is targeting Ethereum, so there are no PUSH0 incompatibility
issues. However if multichain expansion is a plan in the future, it’ll be important to explicitly set
the compiler’s target EVM version as “paris” rather than “shanghai” to avoid PUSH0 opcode
incompatibility.

Impact
Increased deployment size and gas costs.

Recommendation
Use a floating ^0.8.23 pragma everywhere, and target the paris EVM version with `evm_version =
“paris”` in foundry.toml

Response
Fixed.

foostudio 14



9. Miscellaneous gas optimizations and comment fixes

Severity: Informational
Files: Vepoch.sol

Description
- rewardToken can be made immutable
- calculateVeTokens comment should refer to 365 days instead of 365.24
- min lock time should be at least an hour rather than a minute

Response
Fixed.

foostudio 15


