
Epoch Island (ITOProtocolV1) Security Review

Reviewer
Hans

December 26, 2023

https://twitter.com/hansfriese

Contents

1 Executive Summary 2

2 Scope of the Audit 3

3 About Hans 3

4 Disclaimer 3

5 Protocol Summary 3

6 Additional Comments 3

7 Findings 3
7.1 Medium Risk Findings . 3

7.1.1 Accounting can be off by a few WEIs due to rounding . 3
7.1.2 Rounding must be directed so as to be favorable to the protocol. 4
7.1.3 Incomplete support for fee-on-transfer tokens . 5

7.2 Low Risk Findings . 6
7.2.1 Do not allow new positions with zero upside token amount . 6

7.3 Informational Findings . 7
7.3.1 Incorrect comments for the _exchangeRate parameter . 7

1

1 Executive Summary

As a security advisor of Epoch Island, Hans reviewed upside-contracts.

Summary

Type of Project Liquidity Pool

Timeline 10st Dec, 2023 - 14th Dec, 2023

Methods Manual Review

A comprehensive security review identified a total of 4 issues.

Repository Initial Commit

upside-contracts 9a0c5310c53a6c424749d215ce7c2de4079cc96b

Total Issues

High Risk 0

Medium Risk 2

Low Risk 1

Informational 1

Gas Optimization 0

The reported vulnerabilities were addressed by the team, and the mitigation underwent a review process and was
verified by Hans.

Repository Final Commit

Epoch Island da1ea725df1aed0f5cdba939b62ad46317c93b08

2

https://epochisland.io/
https://twitter.com/hansfriese
https://github.com/Moai-Labs/upside-contracts/
https://github.com/Moai-Labs/upside-contracts
https://github.com/Moai-Labs/upside-contracts/tree/9a0c5310c53a6c424749d215ce7c2de4079cc96b
https://epochisland.io/
https://github.com/Moai-Labs/upside-contracts/tree/da1ea725df1aed0f5cdba939b62ad46317c93b08

2 Scope of the Audit

This audit was conducted for a single contract in contracts/ITOProtocolV1.sol.

3 About Hans

Hans is an esteemed security analyst in the realm of smart contracts, boasting a firm grounding in mathematics
that has sharpened his logical abilities and critical thinking skills. These attributes have fast-tracked his journey
to the peak of the Code4rena leaderboard, marking him as the number one auditor in a record span of time. In
addition to his auditor role, he also serves as a judge on the same platform. Hans' innovative insight is evident in
his creation of Solodit, a vital resource for navigating consolidated security reports. In addition, he is a co-founder
of Cyfrin, where he is dedicated to enhancing the security of the blockchain ecosystem through continuous efforts.

4 Disclaimer

I endeavor to meticulously identify as many vulnerabilities as possible within the designated time frame; however,
I must emphasize that I cannot accept liability for any findings that are not explicitly documented herein. It is
essential to note that my security audit should not be construed as an endorsement of the underlying business
or product. The audit was conducted within a specified timeframe, with a sole focus on evaluating the security
aspects of the solidity implementation of the contracts.

While I have exerted utmost effort in this process, I must stress that I cannot guarantee absolute security. It is
a well-recognized fact that no system can be deemed completely impervious to vulnerabilities, regardless of the
level of scrutiny applied.

5 Protocol Summary

Epoch Island is a community-owned economy created to fuel and fund crypto builders, kind of a decentralized
Silicon Valley. ITOProtocolV1 (previously upside) is designed to be a liquidity pool where LPs can create positions
by depositing so-called "upside tokens". Users can deposit their "downside tokens" and gets the upside tokens
after paying a fee. While the protocol assumed EPOCH token as an upside token and USDC as a downside token, it
is designed to be flexible to support any ERC20 tokens.

6 Additional Comments

The security assessment was carried out with a narrow focus on the contracts. Due to time limitations and the
incremental nature of the reviews, the results might not be comprehensive and might not represent the complete
security profile of the protocol. The audit was conducted on the contracts at commit 9a0c53.

7 Findings

7.1 Medium Risk Findings

7.1.1 Accounting can be off by a few WEIs due to rounding

Severity: Medium

Context: https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/
contracts/ITOProtocolV1.sol#L197

Description: The function take() is designed to take the downside tokens from the user and give the upside
tokens. There has been changes in the function take() to handle the case where the user provides more downside
tokens than the maximum available upside tokens. In an overview, the protocol pulls downside tokens from the user

3

https://code4rena.com/@hansfriese
https://code4rena.com/leaderboard
https://solodit.xyz
https://www.cyfrin.io/
https://github.com/Moai-Labs/upside-contracts/tree/9a0c5310c53a6c424749d215ce7c2de4079cc96b
https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L197
https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L197

and takes the protocol fee and LP fee from it and allocate the remainder in the position's downside balance. After
all, the correct accounting would need to ensure that all the downside tokens pulled from the user are distributed
over the protocol fee, LP fee, and the position's downsideTokenBalance. However, the current implementation will
suffer from rounding issues and the accounting can be off by a few WEIs.

ITOProtocolV1.sol
190: (uint256 protocolFee, uint256 lpFee) = computeFee(_positionId, _maxDownsideTokenIn);
191: uint256 _downsideTokenBalanceAfterFees = _maxDownsideTokenIn - protocolFee - lpFee;
192: uint256 upsideTokenAmount = (_downsideTokenBalanceAfterFees * d.upsidePerDownside) /

MULTIPLIER;,!

193:
194: if(upsideTokenAmount > d.upsideTokenBalance) {
195: upsideTokenAmount = d.upsideTokenBalance;
196:
197: _downsideTokenBalanceAfterFees = (upsideTokenAmount * MULTIPLIER) /

d.upsidePerDownside;,!

198: _maxDownsideTokenIn = (_downsideTokenBalanceAfterFees * BP_MULTIPLIER) /
(BP_MULTIPLIER - (d.lpFeeBp + protocolFeeBp));,!

199: (protocolFee, lpFee) = computeFee(_positionId, _maxDownsideTokenIn);//@audit-issue
rounding will make the accounting inaccurate, need to handle smoothly,!

200: }
201: if(_minUpsideTokenOut > upsideTokenAmount) {
202: revert OutputTooLow();
203: }
204:

As we can see, we are calculating _maxDownsideTokenIn reversely starting from the d.upsideTokenBalance and
then decides the protocol fee and LP fee by the function computeFee(). The problem is that the function compute-
Fee() will round the fee amount and _maxDownsideTokenIn will be a few WEIs more than _downsideTokenBal-
anceAfterFees + protocolFee + lpFee.

Impact The internal accounting will be off by a few WEIs and this can be possibly exploited by malicious users.

Recommendation: Calculate lpFee as _maxDownsideTokenIn - downsideTokenBalanceAfterFees - proto-
colFee rather than using computeFee().

Client: Fixed in 2f02c1 following the recommendation.

Hans: Verified.

7.1.2 Rounding must be directed so as to be favorable to the protocol.

Severity: Medium

Context: https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/
contracts/ITOProtocolV1.sol#L228

Description: The function untake() is designed to take the upside tokens back from the user and release the
downside tokens. The amount of upside tokens to be taken back is calculated by multiplying the amount of down-
side tokens to be released and the upsidePerDownside rate. In the calculation, the protocol uses the MULTIPLIER
to avoid rounding issues but the rounding is directed downward. This is not favorable to the LP because the LP will
lose the WEIs that are rounded down.

4

https://github.com/Moai-Labs/upside-contracts/commit/2f02c165ebd8cad2f5f81a9e6db9dee9ae3ad1ef
https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L228
https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L228

ITOProtocolV1.sol
223: function untake(uint256 _positionId, uint256 _downsideTokenAmount) external {
224: LPPosition memory d = lpPositions[_positionId];
225:
226: if(block.timestamp > d.endDate) {
227: revert PositionEnded();
228: }
229:
230: uint256 upsideTokenAmount = (_downsideTokenAmount * d.upsidePerDownside) /

MULTIPLIER;//@audit-issue rounding direction must be reversed, maybe it's a good idea to receive
upside as an input

,!

,!

231:
232: downsideTokenAmounts[_positionId][msg.sender] -= _downsideTokenAmount;
233: lpPositions[_positionId].downsideTokenBalance -= _downsideTokenAmount;
234: lpPositions[_positionId].upsideTokenBalance += upsideTokenAmount;
235:
236: d.upsideToken.safeTransferFrom(msg.sender, address(this), upsideTokenAmount);
237: d.downsideToken.safeTransfer(msg.sender, _downsideTokenAmount);
238:
239: emit Untake(_positionId, _downsideTokenAmount, upsideTokenAmount, msg.sender);
240: }
241:

Impact The LP will lose the WEIs that are rounded down during untake().

Recommendation: Round upward by adding MULTIPLIER - 1 to the numerator.

Client: Acknowledged.

Hans: Acknowledged.

7.1.3 Incomplete support for fee-on-transfer tokens

Severity: Medium

Context: https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/
contracts/ITOProtocolV1.sol#L211C69-L211C88

Description: The protocol is designed to support any ERC20 tokens but it is not fully compatible with fee-on-
transfer tokens. To support fee-on-transfer tokens, the protocol needs to calculate the amount of actually trans-
ferred tokens by checking the balance change. But in numerous places except for supply(), the protocol assumes
the amount of transferred tokens is equal to the amount parameter of the transfer function.

5

https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L211C69-L211C88
https://github.com/Moai-Labs/upside-contracts/blob/9a0c5310c53a6c424749d215ce7c2de4079cc96b/contracts/ITOProtocolV1.sol#L211C69-L211C88

ITOProtocolV1.sol
223: function untake(uint256 _positionId, uint256 _downsideTokenAmount) external {
224: LPPosition memory d = lpPositions[_positionId];
225:
226: if(block.timestamp > d.endDate) {
227: revert PositionEnded();
228: }
229:
230: uint256 upsideTokenAmount = (_downsideTokenAmount * d.upsidePerDownside) / MULTIPLIER;
231:
232: downsideTokenAmounts[_positionId][msg.sender] -= _downsideTokenAmount;
233: lpPositions[_positionId].downsideTokenBalance -= _downsideTokenAmount;
234: lpPositions[_positionId].upsideTokenBalance += upsideTokenAmount;
235:
236: d.upsideToken.safeTransferFrom(msg.sender, address(this),

upsideTokenAmount);//@audit-issue not compatible with fee-on-transfer tokens,!

237: d.downsideToken.safeTransfer(msg.sender, _downsideTokenAmount);
238:
239: emit Untake(_positionId, _downsideTokenAmount, upsideTokenAmount, msg.sender);
240: }
241:

Impact The protocol is not fully compatible with fee-on-transfer tokens.

Recommendation: Implement the balance change check in all places where the protocol pulls tokens from the
user.

Client: Acknowledged. The protocol decided to not support fee-on-transfer tokens.

Hans: Acknowledged.

7.2 Low Risk Findings

7.2.1 Do not allow new positions with zero upside token amount

The function supply() is designed to create a new position with the given amount of upside tokens. But there is no
check to prevent the user from creating a new position with zero upside tokens. Positions with zero upside tokens
are useless and can be exploited by malicious users in a complicated way.

6

ITOProtocolV1.sol
74: function supply(
75: address _downsideToken,
76: address _upsideToken,
77: uint256 _upsideTokenAmount,
78: uint256 _exchangeRate,
79: uint32 _startDate,
80: uint32 _endDate,
81: uint16 _feeBp
82:) external {
83: if(_feeBp > MAX_FEE_BP) {
84: revert FeeTooHigh();
85: }
86: if(block.timestamp > _startDate || _startDate > _endDate) {
87: revert InvalidDuration();
88: }
89:
90: uint256 previousBalance = IERC20Metadata(_upsideToken).balanceOf(address(this));
91: IERC20Metadata(_upsideToken).safeTransferFrom(msg.sender, address(this),

_upsideTokenAmount);,!

92: _upsideTokenAmount = IERC20Metadata(_upsideToken).balanceOf(address(this)) -
previousBalance;,!

93:
94: lpPositions.push(LPPosition(
95: msg.sender,
96: _feeBp,
97: _startDate,
98: _endDate,
99: IERC20Metadata(_downsideToken),
100: IERC20Metadata(_upsideToken),
101: _upsideTokenAmount,//@audit-issue zero amount check
102: _exchangeRate,
103: 0
104:));
105: emit Supply(lpPositions.length - 1);
106: }

Client: Acknowledged.

Hans: Acknowledged.

7.3 Informational Findings

7.3.1 Incorrect comments for the _exchangeRate parameter

From the usage, it is obvious the _exchangeRate parameter is the number of upside tokens to pay per downside
token and it should be in decimals of 18 + D{upside} - D{downside}. But the example in the comment says
the opposite and it is confusing. The comment should be fixed and it is recommended to add more real world
examples to clarify the decimals.

7

ITOProtocolV1.sol
65: /// @notice Allows LPs to create a position
66: /// @param _downsideToken Address of the downside token
67: /// @param _upsideToken Address of the upside token
68: /// @param _upsideTokenAmount The number of upside tokens to provide to this position
69: /// @param _exchangeRate The number of upside tokens to pay per downside token
70: /// @dev _exchangeRate should be computed like so: ((downsideAmountWei / upsideAmountWei) *

10**18)//@audit-info Wrong comment. The rate must be in decimals of 18 + D{upside} - D{downside}
from the usage.

,!

,!

71: /// @param _startDate Unix timestamp of when this position should begin
72: /// @param _endDate Unix timestamp of when this position should end
73: /// @param _feeBp The maximum liquidity provider fee to charge

Client: Fixed in d19dcc.

Hans: Verified.

8

https://github.com/Moai-Labs/upside-contracts/commit/d19dccc24809e31d4759433bf245848449c9eb95

	Executive Summary
	Scope of the Audit
	About Hans
	Disclaimer
	Protocol Summary
	Additional Comments
	Findings
	Medium Risk Findings
	Accounting can be off by a few WEIs due to rounding
	Rounding must be directed so as to be favorable to the protocol.
	Incomplete support for fee-on-transfer tokens

	Low Risk Findings
	Do not allow new positions with zero upside token amount

	Informational Findings
	Incorrect comments for the _exchangeRate parameter

