
MiloTruck

Epoch Island
Security Review Report

October, 2023



Table of Contents
Table of Contents 1
Introduction 2

About MiloTruck 2
Disclaimer 2

Executive Summary 3
About Epoch Island 3
Repository Details 3
Scope 3
Issues Found 3

Findings 4
Summary 4
Medium Severity Findings 5

M-01: Forfeited reward calculation in withdrawForfeit() breaks for multiple withdrawals 5
M-02: Makers can avoid protocol fees when providing liquidity 7
M-03: Use SafeERC20 to handle token transfers 8

Low Severity Findings 10
L-01: Funds might be stuck for tokens where transfer() reverts when amount > uint96 10
L-02: Attackers can leverage flash loans to temporarily gain a large vEPOCH balance 11
L-03: Violation of Checks-Effects-Interaction pattern 12
L-04: Users can accidentally mint 0 vEPOCH when calling deposit() 13

Informational Findings 14
I-01: depositForfeitAddress is unused 14
I-02: Use days for time constants to improve readability 14
I-03: Logic in extendDeposit() can be simplified 14
I-04: Override _beforeTokenTransfer() instead 14
I-05: Minor refactor in transferDepositOwnership() 15
I-06: Redundant constructor in EpochUpsidePoolV1.sol 15
I-07: Refactor claimYield() 15
I-08: Gas savings in withdraw() 16
I-09: Gas savings in deposit() 16
I-10: Gas savings in supply() 17

MiloTruck 1 Epoch Island



Introduction

About MiloTruck
MiloTruck is an independent security researcher who specializes in smart contract audits. Having won
multiple audit contests, he is currently one of the top wardens on Code4rena. He is also a Senior
Auditor at Trust Security and Associate Security Researcher at Spearbit.

For security consulting, reach out to him on Twitter -@milotruck

Disclaimer
A smart contract security review can never prove the complete absence of vulnerabilities. Security
reviews are a time, resource and expertise bound effort to find as many vulnerabilities as possible.
However, they cannot guarantee the absolute security of the protocol in any way.

MiloTruck 2 Epoch Island

https://code4rena.com/
https://www.trust-security.xyz/
https://spearbit.com/
https://twitter.com/milotruck


Executive Summary

About Epoch Island
Epoch Island aims to become a Network State for crypto builders.

This codebase consists of two contracts to facilitate the protocol’s initial time offering for their native
token, EPOCH.

Repository Details

Repository
https://github.com/Moai-Labs/vepoch-contracts
https://github.com/Moai-Labs/upside-contracts

Commit Hash
29b5dda948e856908e57afa7c4ace0f682ecb5eb
d45051b65801157f039f4a88d8118e7d5b307e21

Language Solidity

Scope
● vepoch-contracts/contracts/Vepoch.sol
● upside-contracts/contracts/EpochUpsidePoolV1.sol

Issues Found

Severity Count

High 0

Medium 3

Low 4

Informational 10

MiloTruck 3 Epoch Island

https://epochisland.io/
https://github.com/Moai-Labs/vepoch-contracts/tree/29b5dda948e856908e57afa7c4ace0f682ecb5eb
https://github.com/Moai-Labs/upside-contracts/tree/d45051b65801157f039f4a88d8118e7d5b307e21
https://github.com/Moai-Labs/vepoch-contracts/commit/29b5dda948e856908e57afa7c4ace0f682ecb5eb
https://github.com/Moai-Labs/upside-contracts/commit/d45051b65801157f039f4a88d8118e7d5b307e21


Findings

Summary

ID Description Severity

M-01 Forfeited reward calculation in withdrawForfeit() breaks for multiple
withdrawals

Medium

M-02 Makers can avoid protocol fees when providing liquidity Medium

M-03 Use SafeERC20 to handle token transfers Medium

L-01 Funds might be stuck for tokens where transfer() reverts when amount
> uint96

Low

L-02 Attackers can leverage flash loans to temporarily gain a large vEPOCH
balance

Low

L-03 Violation of Checks-Effects-Interaction pattern Low

L-04 Users can accidentally mint 0 vEPOCH when calling deposit() Low

I-01 depositForfeitAddress is unused Informational

I-02 Use days for time constants to improve readability Informational

I-03 Logic in extendDeposit() can be simplified Informational

I-04 Override _beforeTokenTransfer() instead Informational

I-05 Minor refactor in transferDepositOwnership() Informational

I-06 Redundant constructor in EpochUpsidePoolV1.sol Informational

I-07 Refactor claimYield() Informational

I-08 Gas savings in withdraw() Informational

I-09 Gas savings in deposit() Informational

I-10 Gas savings in supply() Informational

MiloTruck 4 Epoch Island



Medium Severity Findings

M-01: Forfeited reward calculation in withdrawForfeit() breaks for
multiple withdrawals

Bug Description

In withdrawForfeit(), the amount of rewards forfeited from withdrawing early is calculated as such:

Vepoch.sol#L186-L197

uint256 forfeitReward = ((earned[_depositId] + rewardTokensClaimed[_depositId]) * percentage) / 1e18;

// IF number of EPOCH to return is GREATER than pending unclaimed rewards

// Transfer the excess from the user's wallet

if(forfeitReward > earned[_depositId]) {

// Calculate diff and transfer this many tokens from the user

rewardToken.transferFrom(msg.sender, address(this), forfeitReward - earned[_depositId]);

// Since the user didn't have enough earned and had to transfer tokens

// This means we can set this to 0

earned[_depositId] = 0;

} else {

As seen from above, it is the withdrawal percentage multiplied by the deposit's unclaimed rewards
(earned) + his claimed rewards (rewardTokensClaimed).

Afterwards, if forfeitRewards is larger than the deposit's unclaimed rewards, the caller is forced to
transfer the difference into the contract and earned is set to 0.

However, the function does not subtract forfeitReward - earned[_depositId] from
rewardTokensClaimed[_depositId]. This makes forfeited rewards calculation unfair when
withdrawForfeit() is called multiple times.

First, consider a scenario where a user has not withdrawn any of his rewards:

● Assume a deposit is as follows:
○ depositTokenBalance is 1000 tokens
○ earned[_depositId] = 1000e18
○ rewardTokensClaimed[_depositId] = 0

● User withdraws 250 tokens:
○ percentage is 25%
○ forfeitReward is 25% of 1000e18 + 0, which is 250e18
○ earned[_depositId] becomes 750e18

● User withdraws another 250 tokens:
○ percentage is 33.3% (250 / 750)
○ forfeitReward is 33.3% of 0 + 750e18, which is 250e18
○ earned[_depositId] becomes 500e18

● In total, the user lost 500e18 reward tokens

MiloTruck 5 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L186-L197


Now, compare this to a user who has withdrawn all his rewards:

● Assume a deposit is as follows:
○ depositTokenBalance is 1000 tokens
○ earned[_depositId] = 0
○ rewardTokensClaimed[_depositId] = 1000e18

● User withdraws 250 tokens:
○ percentage is 25%
○ forfeitReward is 25% of 0 + 1000e18, which is 250e18
○ User transfers 250e18 reward tokens to the contract, since forfeitReward >

earned[_depositId]
● User withdraws another 250 tokens:

○ percentage is 33.3% (250 / 750)
○ forfeitReward is 33.3% of 0 + 1000e18, which is 333e18
○ User transfers 333e18 reward tokens to the contract, since forfeitReward >

earned[_depositId]
● In total, the user lost 583e18 reward tokens

Even though the amount of deposit withdrawn is the same in both scenarios, the user loses more
reward tokens in the second one. This is because rewardTokensClaimed[_depositId] does not
decrease, as mentioned above.

Impact

If users call withdrawForfeit() more than once after withdrawing a portion of their rewards, they
will incorrectly forfeit more rewards.

Recommended Mitigation

Whenever a user transfers reward tokens when calling withdrawForfeit(), subtract the transferred
amount from rewardTokensClaimed:

Vepoch.sol#L190-L197

if(forfeitReward > earned[_depositId]) {

// Calculate diff and transfer this many tokens from the user

rewardToken.transferFrom(msg.sender, address(this), forfeitReward - earned[_depositId]);

+ rewardTokensClaimed[_depositId] -= forfeitReward - earned[_depositId];

// Since the user didn't have enough earned and had to transfer tokens

// This means we can set this to 0

earned[_depositId] = 0;

} else {

Team Response

Fixed in commit 3f95022.

MiloTruck 6 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L190-L197
https://github.com/Moai-Labs/vepoch-contracts/commit/3f9502226075f3f9f0dc23a0d153e69a52fe327f


M-02: Makers can avoid protocol fees when providing liquidity

Bug Description

If makers wish to allow swaps with no protocol fees, they can set the startDate of their LPPosition
to 0. This causes d.endDate - d.startDate in computeFee() to be extremely large and
percentageFee to be very small, thus the protocol fee will be minimal.

Note that this makes their own taker fee minimal as well.

Impact

Makers can intentionally create swaps with extremely small protocol fees, causing a loss of revenue
for the protocol.

Recommended Mitigation

In supply(), check that _startDate >= block.timestamp.

Consider adding a _startDate < _endDate check as well, so that makers can't accidentally create
"dead" positions where take() cannot be called at any point in time.

EpochUpsidePoolV1.sol#L59

require(7501 > _feeBp, "FEE TOO HIGH");

+ require(_startDate >= block.timestamp, "START DATE < BLOCK.TIMESTAMP");

+ require(_startDate < _endDate, "START DATE >= END DATE");

Team Response

Fixed in commit a6bffec.

MiloTruck 7 Epoch Island

https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L59
https://github.com/Moai-Labs/upside-contracts/commit/a6bffec241b2d7288ccc0e5844493a6564f59b75#diff-935b0a85ecf1dd7bcad094a846183d1713c1f2e12ce3095de3ea4a8c3d8dff00


M-03: Use SafeERC20 to handle token transfers

Bug Description

Both contracts use transfer() and transferFrom() to transfer tokens in many functions. However,
this causes problems for two kinds of ERC20 tokens.

Missing Return Values

Some tokens do not return a bool (e.g. USDT, BNB, OMG) when transfer() is called, see here for a
comprehensive (if somewhat outdated) list.

If such tokens are used, transfer() and transferFrom() will always revert when called. This is
because the IERC20 interface expects a bool to be returned:

IERC20.sol#L41

function transfer(address to, uint256 value) external returns (bool);

IERC20.sol#L78

function transferFrom(address from, address to, uint256 value) external returns (bool);

Thus, whenever transfer() or transferFrom() is called, Solidity will attempt to decode the return
data into a bool. However, since such tokens do not return a bool, the decoding process will fail,
causing the entire call to revert.

No Revert on Failure

Some tokens do not revert on failure, but instead return false (e.g. ZRX, EURS).

Since both contracts do not check the return value of transfer() or transferFrom(), it is possible
for token transfers to silently fail without reverting.

Recommended Mitigation

Use .safeTransfer() instead of .transfer() in the following lines:

● Vepoch.sol#L108
● Vepoch.sol#L130
● Vepoch.sol#L210
● Vepoch.sol#L215
● Vepoch.sol#L234
● Vepoch.sol#L252
● EpochUpsidePoolV1.sol#L87
● EpochUpsidePoolV1.sol#L92
● EpochUpsidePoolV1.sol#L138
● EpochUpsidePoolV1.sol#L158
● EpochUpsidePoolV1.sol#L182
● EpochUpsidePoolV1.sol#L193

MiloTruck 8 Epoch Island

https://gist.githubusercontent.com/lukas-berlin/f587086f139df93d22987049f3d8ebd2/raw/1f937dc8eb1d6018da59881cbc633e01c0286fb0/Tokens%20missing%20return%20values%20in%20transfer
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol#L41
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol#L78
https://etherscan.io/address/0xe41d2489571d322189246dafa5ebde1f4699f498#code
https://etherscan.io/token/0xdb25f211ab05b1c97d595516f45794528a807ad8#code
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L108
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L130
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L210
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L215
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L234
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L252
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L87
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L92
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L138
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L158
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L182
https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L193


Use .safeTransferFrom() instead of .transferFrom() in the following lines:

● Vepoch.sol#L78
● Vepoch.sol#L146
● Vepoch.sol#L192

Team Response

Fixed in commit 3433f47 for EpochUpsidePoolV1.sol.

Acknowledged for Vepoch.sol.

MiloTruck 9 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L78
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L146
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L192
https://github.com/Moai-Labs/upside-contracts/commit/3433f47793f7cfb0d2aa065b95e100161682ed00


Low Severity Findings

L-01: Funds might be stuck for tokens where transfer() reverts when
amount > uint96

Bug Description

Some tokens, such as UNI and COMP, revert if the value passed to transfer() is larger than uint96.
For example, the transfer() function for UNI is as shown:

Uni.sol#L400

function transfer(address dst, uint rawAmount) external returns (bool) {

uint96 amount = safe96(rawAmount, "Uni::transfer: amount exceeds 96 bits");

_transferTokens(msg.sender, dst, amount);

return true;

}

For EpochUpsidePoolV1.sol, this becomes a problem in claimProtocolFees(), since it attempts to
transfer the entire fee balance out in one call. For example:

● A maker places a huge LPPosition for UNI.
● The protocol fees for UNI accumulate until protocolFeeBalances exceeds uint96.
● When claimProtocolFees() is called to claim fees in UNI, it reverts. This is because the

function calls transfer() with a balance larger than uint96.
● Therefore, all UNI fees are unclaimable forever.

For Vepoch.sol, this becomes a problem in claimYield() since it attempts to transfer a depositor's
entire reward balance out in one call. If earned[_depositId] ever exceeds uint96, the depositor will
never be able to claim yield as claimYield() will always revert.

Recommended Mitigation

In claimProtocolFees() and claimYield(), consider adding an amount parameter which allows the
caller to specify the amount of tokens to transfer out in a single call.

Team Response

Fixed in commit a6bffec for EpochUpsidePoolV1.sol.

Acknowledged for Vepoch.sol.

MiloTruck 10 Epoch Island

https://etherscan.io/token/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984
https://etherscan.io/token/0xc00e94cb662c3520282e6f5717214004a7f26888
https://etherscan.io/address/0x1f9840a85d5af5bf1d1762f925bdaddc4201f984#code#L400
https://github.com/Moai-Labs/upside-contracts/commit/a6bffec241b2d7288ccc0e5844493a6564f59b75


L-02: Attackers can leverage flash loans to temporarily gain a large vEPOCH
balance

Bug Description

withdrawForfeit() currently does not check if _depositId belongs to a deposit that was created in
the same transaction. This makes it possible to abuse flash loans to temporarily gain a huge vEPOCH
balance:

● Attacker takes out a flash loan of deposit token.
● Attacker calls deposit() with all his deposit tokens. This mints a huge amount of vEPOCH to

the attacker.
● Attacker uses the vEPOCH balance to do whatever he wants.
● Attacker calls withdrawForfeit() to burn his vEPOCH and get deposit tokens in return.
● Attacker repays the flash loan.

This could be problematic if future contracts or functionality rely on a user's vEPOCH balance, such as
checking vEpoch.balanceOf(msg.sender)).

Recommended Mitigation

Ensure that withdrawForfeit() cannot be called in the same transaction as deposit() for a single
deposit. This can be achieved by ensuring block.timestamp is not the same:

Vepoch.sol#L172-L176

// Ensure this function is only used for deposits where lock has not ended

require(

(d.depositTs + d.lockDuration) > block.timestamp,

"DEPOSIT IS MATURED"

);

+ require(d.depositTs != block.timestamp, "DEPOSIT IN SAME BLOCK");

Team Response

Fixed in commit c65ad05.

MiloTruck 11 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L172-L176
https://github.com/Moai-Labs/vepoch-contracts/commit/c65ad05fdb9ba154a143577fc2a1f99c7f28a8da


L-03: Violation of Checks-Effects-Interaction pattern

Bug Description

Throughout the contract, there are many tokens transfers performed before a state update, even
though it is not necessary.

This violates the Checks-Effects-Interactions pattern, since external calls are performed before the
contract's state is updated.

Should any token have user-controlled external calls (eg. ERC777 tokens have transfer hooks, which
transfers execution control to the token sender), the contract might become vulnerable to reentrancy
attacks.

For EpochUpsidePoolV1.sol, there is no restriction in supply() on what the upside/downside token
address is. Therefore, the maker could even set the upside/downside token address to a malicious
contract to gain a user-controlled external call.

Recommended Mitigation

For EpochUpsidePoolV1.sol, only perform token transfers at the end of take() and untake().

For Vepoch.sol:

● Move L78 to the end of the addRewardTokens() function.
● Move L146 to the end of the deposit() function, just before the return statement.
● L192 should be after line 196, but still in the if-statement.
● L204 and L214 should be above line 190, since they should occur before any token transfer

takes place.
● L234 should be right before the return statement.
● L252 should be at the end of the withdraw() function.

Team Response

Fixed in commit 3433f47 and a788632.

MiloTruck 12 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L78
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L146
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L192
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L204
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L214
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L234
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L252
https://github.com/Moai-Labs/upside-contracts/commit/3433f47793f7cfb0d2aa065b95e100161682ed00
https://github.com/Moai-Labs/vepoch-contracts/commit/a788632ff2e5aede2456bd82035a87781604431b


L-04: Users can accidentally mint 0 vEPOCH when calling deposit()

Bug Description

Since calculateVeTokens() uses division that rounds down, if a user calls deposit() with a small
_tokenAmount and _duration, it is possible for calculateVeTokens() to round down to 0. This
means that the depositor will get nothing in return for his deposit.

Recommended Mitigation

Consider checking that the amount of vEPOCH minted is not zero:

Vepoch.sol#L156

+ uint256 _mintAmount = calculateVeTokens(_tokenAmount, _duration);

+ require(_mintAmount != 0, "_tokenAmount TOO SMALL");

- _mint(_behalfOf, calculateVeTokens(_tokenAmount, _duration));

+ _mint(_behalfOf, _mintAmount);

Team Response

Fixed in commit 840ead7.

MiloTruck 13 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L156
https://github.com/Moai-Labs/vepoch-contracts/commit/840ead7deff070e19191e2646eba60daa91442e3


Informational Findings

I-01: depositForfeitAddress is unused
The depositForfeitAddress state variable is not used anywhere in the contract, and can be
removed.

I-02: Use days for time constants to improve readability

Vepoch.sol#L19

- uint256 public maxDepositDuration = 63072000;

+ uint256 public maxDepositDuration = 730 days;

Vepoch.sol#L325

- require(_newMaxDepositDuration <= 315576000, "10 YEAR MAX");

+ require(_newMaxDepositDuration <= 3652.5 days, "10 YEAR MAX");

I-03: Logic in extendDeposit() can be simplified
veTokenDiff is equal to calculateVeTokens(d.depositTokenBalance, _secondsToExtend), so
there is no need to take the difference between the current and new balance:

Vepoch.sol#L267-L270

// Determine how many more veTokens should be minted

- uint256 currentVeTokenBalance = calculateVeTokens(d.depositTokenBalance, d.lockDuration);

- uint256 newVeTokenBalance = calculateVeTokens(d.depositTokenBalance, d.lockDuration + _secondsToExtend);

- uint256 veTokenDiff = newVeTokenBalance - currentVeTokenBalance;

+ uint256 veTokenDiff = calculateVeTokens(d.depositTokenBalance, _secondsToExtend);

I-04: Override _beforeTokenTransfer() instead
Instead of overriding transferFrom() and transfer(), use the _beforeTokenTransfer() hook to
make tokens non-transferable. This can be done as such:

function _beforeTokenTransfer(address from, address to, uint256) internal override {

if (from != address(0) && to != address(0)) {

require(authorised[msg.sender], "NON TRANSFERABLE");

}

}

With this, there is no need to override transferFrom() and transfer() individually.

MiloTruck 14 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L19
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L325
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L267-L270


I-05: Minor refactor in transferDepositOwnership()
Since d is a storage pointer, use d.owner below:

Vepoch.sol#L290-L291

// Transfer ownership of deposit

- deposits[_depositId].owner = _newOwner;

+ d.owner = _newOwner;

This helps to save a small amount of gas as well.

I-06: Redundant constructor in EpochUpsidePoolV1.sol
The constructor currently doesn't do anything. Consider setting protocolFeeMaxBp and
protocolFeeRecipientAddress in the constructor, so that you don't have to call setProtocolFee()
after deployment. Otherwise, remove the constructor.

I-07: Refactor claimYield()
Both claimYield() functions contain duplicated code. Consider refactoring the code to use a private
function instead:

function _claimYield(uint256 _depositId) private returns (uint256 reward) {

// Ensure the claimer owns the specified deposit

require(deposits[_depositId].owner == msg.sender, "NOT OWNER");

_updateRewards(_depositId);

reward = earned[_depositId];

earned[_depositId] = 0;

rewardTokensClaimed[_depositId] += reward;

emit RewardClaimed(_depositId, reward);

}

// @notice Allows user to claim reward tokens earned for a given depositId

function claimYield(uint256 _depositId) public {

uint256 reward = _claimYield(_depositId);

rewardToken.transfer(msg.sender, reward);

}

// @notice Allows user to claim reward tokens earned for one to many depositId's

function claimYield(uint256[] calldata _depositIds) public {

uint256 totalRewards;

for(uint256 i = 0; i < _depositIds.length; i++) {

uint256 totalRewards += _claimYield(_depositIds[i]);

}

rewardToken.transfer(msg.sender, totalRewards);

}

MiloTruck 15 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L290-L291


I-08: Gas savings in withdraw()
In the _tokenAmount == d.depositTokenBalance body, use _tokenAmount instead of
d.depositTokenBalance wherever possible to avoid reading from storage unnecessarily:

Vepoch.sol#L234

- depositToken.transfer(msg.sender, d.depositTokenBalance);

+ depositToken.transfer(msg.sender, _tokenAmount);

I-09: Gas savings in deposit()
Cache depositCount in memory to avoid reading from storage multiple times:

Vepoch.sol#L143-L165

- function deposit(uint256 _tokenAmount, uint32 _duration, address _behalfOf) external returns(uint256) {

+ function deposit(uint256 _tokenAmount, uint32 _duration, address _behalfOf) external returns(uint256 _depositCount) {

require(_duration > 59 && _duration <= maxDepositDuration, "INVALID DURATION");

depositToken.transferFrom(msg.sender, address(this), _tokenAmount);

- depositCount += 1;

- deposits[depositCount] = Deposit(

+ _depositCount = ++depositCount;

+ deposits[_depositCount] = Deposit(

_behalfOf,

uint32(block.timestamp),

_duration,

_tokenAmount

);

_mint(_behalfOf, calculateVeTokens(_tokenAmount, _duration));

// Ensure this deposit is earning

- _updateRewards(depositCount);

- rewardStakingPower[depositCount] += calculateVeTokens(_tokenAmount, _duration);

+ _updateRewards(_depositCount);

+ rewardStakingPower[_depositCount] += calculateVeTokens(_tokenAmount, _duration);

- emit Deposited(depositCount);

+ emit Deposited(_depositCount);

- return depositCount;

+ return _depositCount;

}

MiloTruck 16 Epoch Island

https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L234
https://github.com/Moai-Labs/vepoch-contracts/blob/29b5dda948e856908e57afa7c4ace0f682ecb5eb/contracts/Vepoch.sol#L143-L165


I-10: Gas savings in supply()
Cache lpPositionCount to avoid reading from storage multiple times:

EpochUpsidePoolV1.sol#L61-L73

+ uint256 _positionId = lpPositionCount++;

- lpPositions[lpPositionCount] = LPPosition(

+ lpPositions[_positionId] = LPPosition(

msg.sender,

_feeBp,

_startDate,

_endDate,

IERC20Metadata(_downsideToken),

IERC20Metadata(_upsideToken),

_upsideTokenAmount,

_exchangeRate,

0

);

- emit Supply(lpPositionCount);

- lpPositionCount += 1;

+ emit Supply(_positionId);

MiloTruck 17 Epoch Island

https://github.com/Moai-Labs/upside-contracts/blob/d45051b65801157f039f4a88d8118e7d5b307e21/contracts/EpochUpsidePoolV1.sol#L61-L73

